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Abstract. A lattice computation of the B-meson decay constant and the mass of the b-quark to leading
order in the heavy quark effective theory is presented. The involved renormalization problems are solved
non-perturbatively, and the continuum limit is taken. In the quenched approximation the results reported
here already offer an interesting numerical precision, which will be further improved in the near future.

1 Introduction

Not least by the influence of the phenomenologically very
interesting programme of current experiments to inve-
stigate CP-violation in the B-system [I], the study of
B-meson physics has become a vivid area of research.
To interpret the experimental observations within (or
beyond) the standard model, matrix elements between
low-energy hadron states must be known. But since these
QCD matrix elements live in the strongly coupled sec-
tor of the theory, they naturally call for a genuinely non-
perturbative, ‘ab initio’ approach for their determination:
the lattice formulation of QCD, which enables a numerical
computation of its low-energy properties through Monte
Carlo evaluation of the underlying FEuclidean path inte-
gral.

Lattice QCD calculations with b-quarks can valuably
contribute to precision CKM-physics by (over-)constrain-
ing the unitarity triangle and help to obtain other phe-
nomenologically relevant predictions. Examples for expe-
rimentally inaccessible key parameters that are important
here are the B-meson decay constant and the mass of the
b-quark, which are subject of the present report. In stu-
dying B-physics on the lattice, however, we face some par-
ticular problems. A first one already originates in the b-
quark itself, the mass of which is much larger than the
inverse lattice spacings, 1/a, affordable in simulations on
present-day computers even in the quenched approxima-
tion (1/mp =~ 1/(4GeV) < a =~ 0.07fm): huge discretiza-
tion errors would render a realistic treatment of B-systems
with a propagating b-quark on the lattice impossible.

This motivates to recourse to effective theories. Theo-
retically most attractive is the heavy quark effective
theory (HQET) whose Lagrangian in lattice formulation

Luqer = YnDotn + L ¥y {—%2 D — ¢, (Bo)} ¢y + ...
* (ALPHA Collaboration)

is, to first order in the inverse heavy quark mass 1/m,
formally identical to the continuum one. As a similar ex-
pansion holds for the matrix elements in question, lat-
tice HQET constitutes a systematic expansion in terms of
1/my, for B-mesons at rest [2] that also has a continuum
limit order by order in the 1/m-expansion.

Mainly because of two reasons, it has not received
much attention in the past though:

1. The rapid growth of statistical errors as the time se-
paration of correlation function is made large. This
unwanted feature is already encountered in the lowest-
order effective theory (static approximation) and limits
a reliable extraction of masses and matrix elements.

2. The number of parameters in the effective theory does
not only increase with the order of the expansion, but
they have also to be determined non-perturbatively,
since otherwise — as a consequence of the mixings
among operators of different dimensions allowed in the
cutoff theory (e.g. of ﬁ’t/]thl/Jh with 1y, Doty ) — one
is always left with a perturbative remainder that diver-
ges as a — 0. Hence, these power-law divergences cause
the continuum limit not to exist unless the theory is
renormalized non-perturbatively [3].

Here T summarize recent progress in both directions,
which reflects in two concrete applications in the combined
static and quenched approximation. These are a determi-
nation of the Bg-meson decay constant, where a correction
due to the finite mass of the b-quark is estimated by in-
terpolating between the static result and Fp_ [45], and a
fully non-perturbative computation of the b-quark’s mass
based on the idea of a non-perturbative matching of HQET
and QCD in finite volume as proposed in [6[7].

2 The B,-meson decay constant

On our way towards a precision computation of Fp, in
quenched QCD [4,[5] we employ a two-step strategy. First,
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the decay constant is calculated in lowest order of HQET,
and then it is combined with available results for the pseu-
doscalar decay constant Fpg(mpg) in QCD around the
charm quark mass region by interpolation in 1/mpg.

The pseudoscalar decay constant at finite mass is rela-
ted to the renormalization group invariant (RGI) matrix
element of the static axial current,

Prar = Zrar(PS| A5 0) , (1)

where A5t =
Fpsy/mps = CPS (M/AWS) X Prar + O (1/M) . (2)

Here, M denotes the RGI mass of the heavy quark and
Ass the QCD A-parameter in the MS scheme. The renor-
malization factor Zrgy, turning any bare matrix element
of A% into the RGI one, has been non-perturbatively
determined in [§]. Cpg accounts for the fact that in order
to extract predictions for QCD from results computed in
the effective theory, its matrix elements are to be related
to those in QCD at finite quark mass values. In this sense
Cpg translates to the ‘matching scheme’ [9,R], which is
defined by the condition that matrix elements in the (sta-
tic) effective theory, renormalized in this scheme and at
scale p = m, equal those in QCD up to 1/m-corrections.
In leading order it is given via the large-mass asymptotics

Y05t in case of PS = By, through:

Dpar = lim [In(M/4A55) ] ") Fosy/mps,  (3)
M —o00

and thanks to the recent 3-loop computation of the an-
omalous dimension of the static axial current [10], the
function Cps(M/Ayg) = Frs F/QBRGI is now known
perturbatively up to and including g*(m)-corrections. A
numerical evaluation as explained in [§] is shown in Fig. [0
where one can also infer that the remaining perturbative
uncertainty has become very small.
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Fig. 1. Conversion factor to the matching scheme, which
translates a RGI matrix element of A$®" at infinite mass to
the one at finite mass. Its uncertainty is estimated to be smal-
ler than 2% (half of the difference between the 2- and 3-loop
results)
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2.1 RGI matrix element in the static theory

As mentioned before, heavy-light correlation functions on
the lattice, from which B-physics matrix elements such
as the B-meson decay constant in question are obtained
at large Euclidean time, are affected by large statistical
errors in the static approximation. Their noise-to-signal
ratio grows exponentially with the time separation, and
in particular for the Eichten-Hill action [2],

S = a* th

this ratio roughly behaves as exp{zo(FEstat — mx)} [11]
with Fg.¢ the bare ground state energy of a B-meson in
the static theory, diverging linearly in the continuum limit.

To overcome this difficulty, we introduced in [4] a few
alternative discretizations of the static theory that retain
the O(a) improvement properties of the action (H) but
lead to a substantial reduction of the statistical fluctua-
tions. These new static quark actions rely on changes of
the parallel transporters U(x, 1) in the covariant deriva-
tive Dot () = a~ ' [¢n(x) — Ut (z — a0, 0)¢, (z — a0)] of
the form U(x,0) — W(x,0), where now W (x,0) is a fun-
ction of the gauge fields in the immediate neighbourhood
of x, x+ a0. Its best version employs ‘HYP-smearing’ that
takes for W (x,0) the so-called HYP-link, which is a fun-
ction of the gauge links located within a hypercube [12].
Comparing the noise-to-signal ratios in Fig.[2, one can see
that around x¢ ~ 1.5 fm more than an order of magnitude
can be gained in this case w.r.t. to the Eichten-Hill action
and, in addition, the statistical errors grow only slowly as
xo is increased. Even more importantly, we observed [4]

)Dothn (), (4)
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Fig. 2. Noise-to-signal ratio of a B-meson correlation function
in static approximation at a ~ 0.08 fm for various actions [4].
Bullets refer to the original Eichten-Hill action, while triangles
correspond to the alternative discretization with HYP-links

(see also [I3]) quite the same, small lattice artifacts with
the new discretizations.

In our computational setup to determine the bare ma-
trix element (Bg|A5*|0) entering (1) we use the Schro-
dinger functional (SF) formulation of QCD with non-per-
turbatively O(a) improved Wilson actions in the gauge
and light (i.e. relativistic) quark sectors. For technical de-
tails and the exact definitions of the correlation functions
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we refer to [814]. Here we only record that [I4]

B Astat 0 Ztat(mo) (xo—T/2)Estat (z0) 5
<s|0|>0<7\/f—16 , (5)

modulo volume factors, where f3** is a proper SF corre-
lation function of the (O(a) improved) static axial current
with the quantum numbers of a B-meson and f; is a cor-
responding boundary-to-boundary correlator, which ser-
ves to cancel the renormalization factors of the boundary
quark fields. Moreover, we implement wave functions at
the boundaries of the SF-cylinder to construct an inter-
polating B-meson field that suppresses unwanted conta-
minations from excited B-meson states to the correlators.

So far, the bare matrix element () has been calculated
for three lattice spacings (a = 0.1 fm, 0.08 fm and 0.07 fm),
and the regularization dependent part of the factor Zrar,
which according to () must be attached to get the RGI
matrix element, has been computed for the new actions as
it was done for the Eichten-Hill action in [8]. The conti-
nuum extrapolation quadratic in the lattice spacing of our
results stemming from the static action with HYP-links is
displayed in the right part of Fig.[3. To illustrate the gain

3/2
r’0 cI)RG[ |||||||||!||||||| L L B
3 I~ Wilson | improved
2.5 I~ BN a=0.1fm |
L I -
N S
o b b b IR R R A

0 010203 0 0.02 0.04
a/r, (a/ro)?

Fig. 3. RGI matrix element of A§"* [§], based on unimproved
bare data from [I516] (left) and on simulations of the O(a) im-
proved theory with the new discretization [4l[13] (right). A con-
tinuum extrapolation of the latter yields rg/2<15RGI = 1.74(13)

in precision and control of the systematic errors, we con-
front our O(a) improved results with an analysis of older
unimproved Wilson data for the bare matrix element, re-
produced from [§] in the left part of the figure.

2.2 Extrapolation in the heavy quark mass

To finally arrive at a value for Fg_, we combine @rgy, refer-
ring to the static limit and thus being independent of the
heavy quark mass, with numbers of Fpg in the continuum
limit at finite values of the quark mass, which have been
collected in the context of the (quenched) computation
of Fp, of [I7/1§]. In incorporating the mass dependence
@) predicted by HQET, we are then led to extrapolate

T’S/QFPS‘ /mps/Cps(M/Ayg) from the charm region to the
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static estimate TS/Q@RGI by a linear fit in 1/(rompg). This
interpolation is shown in Fig. @] where the zigzag error
bands around the relativistic data indicate a small syste-
matic effect that is due to the mass dependence of the
discretization errors in the decay constant near the ch-
arm quark mass as discussed in [B[18]. While an extra-
polation in 1/(rgmpg) from the charm region without the
constraint through the static approximation would look
similar, it is obvious that the interpolation is much safer,
since extrapolating to the (quite distant) Bg-meson scale
depends significantly on the functional form assumed.
Using mp, = 5.4GeV, ro = 0.5fm and the numerical
perturbative value of the matching factor Cpg(My/Agpg)
translating to finite b-quark mass, we find from the inter-
polation to 1/(romp,) in Fig. @l as our present result [5]

roFp, = 0.52(3) — Fp, =206(10)MeV.  (6)

This number includes all errors except for the quenched
approximation; the (unavoidable) scale ambiguity intro-
duced by it can be estimated to be about 12%.
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Fig. 4. Interpolation in the inverse heavy-strange meson mass,
mps, between the RGI matrix element of the static axial cur-
rent and relativistic data around the charm quark mass [5]

3 The b-quark’s mass

The second of the aforementioned problems that so far
hampered the use of HQET on the lattice is the occur-
rence of power-law divergences in the lattice spacing. It
already shows up in the static approximation and thereby
affects, for instance, the computation of the mass of the
b-quark in leading order of HQET. In this case the ki-
netic and the mass terms in the static action mix under
renormalization and give rise to a local mass counterterm
om « 1/a, the self-energy of the static quark, which im-
plies a linearly divergent truncation error if one relies on
an only perturbative subtraction of this divergence. There-
fore, past lattice computations in the framework of HQET
could not reach the continuum limit [T9,[20].

A strategy for a solution to this longstanding problem
was developed in [7], which now offers the possibility to
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perform clean, non-perturbative calculations in HQET. It
basically consists of three parts that I want to briefly de-
scribe in the following by sketching a (still ongoing) com-
putation of the b-quark’s mass as example [7,21]:

1. Renormalization of the effective theory amounts to re-
late the parameters of the HQET Lagrangian to those
of QCD, a step usually called matching. In order to rea-
lize the matching in a non-perturbative way, one impo-
ses matching conditions of the form ®HQET (L4 M) =
PP (Lo, M) in a physically small volume of linear
extent Ly = O(0.2fm), where ®1QET and ¢QCP are
suitably chosen observables in HQET and QCD to
be calculated with the aid of numerical simulations.
The finiteness of the matching volume ensures that
lattice resolutions satisfying amp < 1 are possible
and the b-quark can be treated as standard relativi-
stic fermion, while at the same time the energy scale
1/Ly = O(1GeV) is still significantly below my, and
HQET applies quantitatively. In determining the pa-
rameters of the effective theory from those of QCD
via such a non-perturbative matching in finite volume,
the predictive power of QCD is transfered to HQET.
Of course, owing to the very construction of the effec-
tive theory, it is clear that these matching conditions
must also carry a dependence on the heavy quark mass,
which is most conveniently identified with the (scheme
and scale independent) RGI mass, M (see e.g. [22]).
In the concrete case of the b-quark mass computation,
definite choices for the quantities @ have to be made
to formulate a sensible matching condition between the
quark mass in the full, relativistic theory (QCD) and
HQET. Those are I'(L, My), denoting the energy of
a state with the quantum numbers of a B-meson but
defined in a small volume of extent L, and Iyat(L)
as its counterpart in (leading order of) the effective
theory. As detailed in [7}[23], both can be expressed
as logarithmic derivatives of appropriate finite-volume,
heavy- and static-light correlation functions, respec-
tively, and numerically evaluated with high precision.

2. Next we need to establish a connection to a physi-
cal situation, where observables of the infinite-volume
theory such as masses or matrix elements are acces-
sible at the end. The accompanying gap between the
small volume with its fine lattice resolution, where the
matching of HQET and QCD is done, on the one side
and larger lattice spacings (and also larger volumes)
on the other is bridged by a recursive finite-size scaling
procedure inspired by [24]: the volume to compute the
quantity Isat(L) in HQET is iteratively enlarged until
one reaches a volume of linear extent L = O(1fm) so
that, at the same resolutions a/L (i.e. at the same bare
parameters) met there, large volumes with L ~ 2fm
— to accommodate physical observables in the infinite-
volume theory — eventually become affordable. Also
note that, apart from terms of O(1/(LoM,,)" 1) if con-
sidering HQET up to order n, any dependence on the
unphysical small-volume physics is gone now.

3. Finally, a physical, dimensionful input is still missing.
In the case at hand this means to link the energy I;a¢,
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which turns into the B-meson’s static binding energy,
Etat, as the volume grows, to the mass of the B-meson
as the physical observable in large volume whose nu-
merical value is taken from experiment.

To join the foregoing three steps, we have to recall that
energies in the effective theory differ from the correspon-
ding ones in QCD by a linearly divergent mass shift mpare,
which has its origin in the mixing of ¥, Doty with the
lower-dimensional operator v,y under renormalization
— the central problem we started from. As a consequence
of its universality (i.e. its independence of the state), ho-
wever, Mpare Obeys at any fixed lattice spacing

(7)
(8)
Imposing (§)) for L = Ly as the non-perturbative matching
condition in small volume implicitly determines the para-
meter mpare and may hence be exploited to replace it in
(D). Then, after adding and subtracting a term s (Lo)
(where Ly = 22 Lo ~ 1 fm with lattice spacings commonly
used in large-volume simulations), the resulting equation
may be cast into the basic formula

mp = Estat - Fstat (LQ) + Fstat (LQ) - Fstat (LO)
a — 0 in HQET

+ F(LOaMb)
————

a — 0in QCD

mB = Egtat + Mpare »
F(L, Mb) = Fstat (L) + Mpare -

9)

a — 0in HQET
+ O (4*/My)

(with A a typical low-energy QCD scale), where the terms
are just arranged such that (the unknown) mip,.e can-
cels in the energy differences AE = Egat — Iytat(L2) and
Titat (L2) — I'stat(Lo), and the continuum limit exists se-
parately for each of the pieces entering ().

The entire heavy quark mass dependence is contained
in I'(Lg, M), defined in QCD with a relativistic b-quark.
This mass dependence has been non-perturbatively map-
ped out in [23], where as a particular ingredient of the
numerical calculation, which demands to keep fixed the
(dimensionless) RGI heavy quark mass while approaching
the continuum limit, the knowledge of several renormaliza-
tion factors and improvement coefficients relating the bare
to the RGI quark mass is required. Although they had al-
ready been determined [22,25], it was desirable to improve
their precision and to estimate them directly in the bare
coupling range relevant for our application. They were
thus redetermined in [23] and, as exemplified in Fig. [3,
performing controlled continuum extrapolations provides
w = limg 10 Lol (Lo, M) as function of z = LoM. In
view of the b-quark mass may now be extracted from
the interception point of w(z) with the combination

Wstat = LOmB_LO {Fstat(LQ) - Fstat(LO)}_LOAE . (10)

The associated graph is given by Fig. [f, where for the
time being we restricted the analysis to unimproved Wil-
son fermion data for aFg,t from the literature [I5], re-
sulting in LoAE = 0.46(5) (cf. the Lh.s. of Fig. [@). We
presently obtain in static and quenched approximation [7]

roMy, = 16.12(29) — mMS (M) = 4.12(8) GeV (1)
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Fig. 5. Continuum limit extrapolations of LoI'(Lo, M) in

a relativistic QCD and small volume (of linear extent Lo =
0.2 fm) for representative values of z = Lo M [23]
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Fig. 6. Solution of (@) for the dimensionless RGI b-quark
mass, LoMy. (u indicates that during the computation one
had to work at a certain fixed value of the renormalized SF
coupling)

up to corrections of O(A2?/My) = O(A/(LoMy)). From
the — yet preliminary — r.h.s. of Fig. [0 [4,21] one infers
that, once the computation of aFg,; with the static ac-
tion discussed above (which also has linear O(a) lattice
artifacts removed) is finished, a continuum limit of LoyAFE
with a (by a factor = 3) smaller error is in sight and will
substantially enhance the accuracy of the result ([IT).

4 Conclusions and outlook

This status report on actual work of our collaboration
makes evident that, by virtue of (mainly two) recent ad-
vances, non-perturbative calculations using the lattice re-
gularized heavy quark effective theory have reached a new
quality. One important ingredient is the use of a modified
static action which, for the first time, enables to compute
B-meson lattice correlation functions with good statistical
precision in the static approximation for zg > 1fm. As de-
monstrated both for the Bg-meson decay constant and for
the b-quark mass, this represents a considerable improve-
ment and has a great impact on the achievable precision
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Fig. 7. Subtracted, dimensionless Bs-meson energy evalua-
ted from bare Wilson fermion numbers of [15] (left) and from
simulations with the alternative discretization of [4]21] (right)

in B-physics computations employing HQET[] The deter-
mination of MM also applies the other promising deve-
lopment, a general strategy how to solve renormalization
problems in HQET entirely non-perturbatively, taking the
continuum limit throughout all steps involved.

In the quenched approximation, where all the presen-
ted results refer to, the quoted uncertainties can (and will)
be further reduced. Moreover, in interpolating between
data obtained in QCD and in the static limit, our result
for F, is almost independent of any effective theory.

Finally it is worth to emphasize the interesting poten-
tial of these methods for systematic and straightforward
(albeit technically ambitious) extensions. Since it is one
of the benefits of the theoretical concepts addressed here
that describing the b-quark by an effective theory circum-
vents the need for prohibitively large lattices (because it
completely eliminates the mass scale of the b-quark), they
will very likely allow to also go beyond the static appro-
ximation by inclusion of 1/my-corrections as well as to
incorporate dynamical fermions without major obstacles.
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